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Exploring Congestion Control Mechanism of TCP
Variants over Wired & Wireless Networks

Syful Islam, Ratnadip Kuri, Md. Humayun Kabir, Md. Javed Hossain

Abstract— A reliable end to end communication is a buzzword that is promised by the transport layer protocol TCP. TCP, a Reliable
transport protocols are tuned to perform well in different networks but, packet losses occur mostly because of congestion. TCP contains
several mechanisms (such as slow start, congestion avoidance, fast retransmit and fast recovery) for ensuring reliability. However, it has
reached its limitation in some challenging network environments like-High speed communication, Communication over different media.
Thus, it requires further analysis and development of congestion control algorithms. In this paper, we have explored the reliability and
robustness of TCP variants (Tahoe, Reno, New-Reno, SACK, FACK and TCP VEGAS, HSTCP, CUBIC TCP) based on different
parameters such as throughput, end-to-delay, jitter and packet drop ratio over wired and wireless networks. We have also compared and
discussed different congestion control and avoidance mechanisms of TCP variants to show how they affect the throughput and efficiency of

different network environments.

Index Terms—Congestion avoidance, Congestion Window, Fast-recovery, Fast-retransmit, Reliability, Slow Start, TCP variants.

1 INTRODUCTION

CP is a reliable connection-oriented end-to-end protocol

designed for the wireline networks that are characterized

by negligible random packet losses. Most of the data is
transmitted through TCP in today’'s WWW (World Wide
Web). Early TCP (Transmission Control Protocol) implementa-
tion uses go-back-n mode with cumulative positive acknowl-
edgment and requires a retransmit time-out to retransmit the
lost packet. This TCP did little to minimize network conges-
tion. Modern TCP implementations contain AIMD (additive
increase/multiplicative decrease) [1] with four intertwined
algorithms (slow start, congestion avoidance, fast retransmit
and fast recovery) aimed at controlling network congestion
while maintaining good user throughput. It ensures reliability
by starting a timer whenever it sends a segment and the re-
ceiver that acknowledge the segments that it receives. If it
does not receive any acknowledgment from the receiver with-
in the ‘time-out’ period, it retransmits the segment again. Our
paper will start by taking a brief look at different congestion
avoidance algorithms and noting how they differ from each
other. In this paper, we try to represent a performance com-
parison table to clarify the main differences among the TCP
variations further.
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2.1 Slow start

Slow-start is a mechanism used to gradually increase the
amount of data in transmission and attempts to keep the
segment uniformly spaced. It is one of the most critical parts
of the congestion avoidance technique used by TCP as
specified by RFC 5681[2]. This technique is accomplished in
conjunction with other algorithms to avoid sending more data
than the network is capable of transmitting, to avoid network
causing congestion. In the slow start, when a connection is
established, first the value of cwnd is set to 1, and after each
received ACK the value is updated to (cwnd = cwnd + 1), i.e.,
double of cwnd for each RTT. The exponential growth of
cwnd continues until a packet loss is observed, causing the
value of ssthresh to be updated to (ssthresh = cwnd/2). After
the packet loss, the connection starts from the slow start again
with cwnd =1, and the window is increased exponential until
it equals ssthresh, the estimate for the available bandwidth in
the network. At this point, the connection goes to the
congestion avoidance phase where the value of cwnd is
increased less aggressively with the pattern (cwnd = cwnd +
1/cwnd), implying linear instead of exponential growth. This
linear increase will continue until a packet loss is detected.
That is why it is also known as the exponential growth phase.

2.2 TCP’s Congestion Avoidance

In Transmission Control Protocol (TCP), the congestion win-
dow is a mechanism of stopping the link between two places
from being overloaded with too much traffic, i.e., it is a way to
deal with packets loss. It is one of the most critical factors that
determine the number of bytes that can be outstanding at any
time. Congestion usually occurs when data arrives faster (a
fast LAN) and send out at a lower speed [3]. The sender main-
tains the congestion window where the size of this window is
calculated by estimating how much congestion there is be-
tween the two places. The basis of TCP congestion control
mechanism lies in Additive Increase Multiplicative Decrease
(AIMD), halving the congestion window for every window
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containing a packet loss, and increasing the congestion win-
dow by roughly one segment per RTT otherwise. If all seg-
ments are received, and the acknowledgments reach to the
sender on time, some constant is added to the window size.
The window keeps growing exponentially until a timeout oc-
curs or the receiver reaches its limit (a threshold value
"thresh"). After this, the congestion window increases linearly
at the rate of 1/(congestion window) packets on each new
acknowledgment received. When a packet is dropped, then
the congestion window (W) reduced to half. After the drop, the
TCP sender increases its congestion window linearly until the
congestion window has reached its old value W, and another
packet drop occurs. In [4] a steady-state model, the develop-
ment of TCP’s congestion window is depicted below:
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T T
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Fig.1. Development of TCP’s congestion window.

2.3 TCP's Congestion Avoidance

In Transmission Control Protocol (TCP), the Fast Retransmis-
sion is a performance enhancement technique where the du-
plicate acknowledgment is taken as the fundamental mecha-
nism to reduce the time a sender waits before retransmitting a
lost segment. The fast-retransmit mechanism ensures the re-
transmit of the packet as soon as possible if the packet is lost.
The TCP sender uses a timer to recognize lost segments. If an
acknowledgment is not received for a particular segment
within a specified time (Round-trip delay time), the sender
will assume the segment was lost in the network and will re-
transmit the segment. The fast-retransmit works as follows: if
a TCP sender receives four acknowledgments with same
acknowledge number then, there is enough evidence of packet
drop with the higher sequence number. The sender will re-
transmit the packet before its timeout. It means that instead of
waiting for the retransmit timer to expire, the sender can re-
transmit a packet immediately after receiving three duplicate
ACKs. The concept of fast retransmission technique is depict-
ed in Fig.2.

Timeout
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Fig.2. Representation of Fast-retransmission technique.

2.4 Fast Recovery
The Fast-Recovery algorithm is implemented together with a
Fast-Retransmit algorithm that retransmits the missing packet
signaled by three duplicate ACKs and wait for an acknowl-
edgment of the entire transmit window. It is also called Fast-
Retransmit/Fast-Recovery algorithm. The fast recovery is an
improved version of fast retransmit and algorithms are usual-
ly implemented together [5] as follows:
a) When the third duplicate ACK in a row is received, set
ssthresh to value:
ssthresh = min(cwnd/2, 2 MSS) 1)
where MSS=maximum segment size.

Retransmit the missing segment. Set cwnd to ssthresh
plus three times the segment size. This increases the con-
gestion window by the number of segments that have left
the network and which the other end has cached.

b) Each time another similar ACK arrives, which increase
cwnd by the segment size. This also inflates the conges-
tion window for the additional segment that has left the
network. Transmit a packet, if allowed by the new value of
cwnd:
cwnd = (ssthresh + no. of duplicate acks received) ------ 2)

c) When the next ACK arrives, that acknowledges new data
packet, set cwnd to ssthresh. This ACK is the acknowl-
edgment of the retransmission of data from step 1, one
round-trip time after the retransmission. Additionally, this
ACK should acknowledge all the intermediate segments
sent between the lost packet and the receipt of the first
duplicate ACK. This step is congestion avoidance since
TCP is down to one-half the rate it was at when the packet
was lost.

3 TCP CONGESTION CONTROL ALGORITHMS IN WIRED
NETWORK

In this section, we performed the simulation to investigate the
performance of the various congestion control algorithms
(Taho, Reno, Newreno, Sack, Fack and Vegas, HSTCP, Cubic)
in TCP from different aspects in a wired network. Previous
work [6-7] perform comparison considering very few parame-
ters. In our comparative analysis, we tried to investigate most
of the parameter to explore actual behavior of TCP protocol
over wired and wireless network. Here we use network simu-
lator version-2.35[8-10] where TCL and OTCL scripting [11]
are used for better scheduling event and controlled environ-
ment.

3.1 Comparison of Congestion window concerning

time

Congestion window (CWND) of TCP changes based on the
change of its basic algorithms in every TCP variant (Taho, Re-
no, Newreno, Sack, Fack, Vegas, HSTCP, Cubic TCP). Simula-
tion result of congestion window describes slow start, conges-
tion avoidance, fast retransmit and fast recovery algorithms in
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TCP variants. In Fig 3 & Fig 4 we show an overall comparison
of all TCP variant for low and high bandwidth network in the
congestion window versus time graph.
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Fig 3: Overall Comparison of Congestion window versus time
(20 Mb)
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Fig 4: Overall Comparison of Congestion window versus time
(2 Gb)

In TCP Vegas, Fig.3 shows that cwnd of TCP Vegas increases
by the rate half than that of TCP Tahoe and New reno in slow
start phase. In congestion avoidance phase cwnd is set to a
constant value as cwnd is controlled according to network
traffic prediction based on observed RTT values. However, in
a high-speed network, TCP Vegas is quite inefficient in con-
trolling its congestion window due to its congestion control

mechanism as shown in fig 4. In High-speed TCP, Fig 4 shows
the modified response function that only takes effect with
higher congestion windows; it does not change TCP behavior
in environments with massive congestion and therefore does
not produce any new dangers of congestion drop in a high-
speed network. HSTCP ensures that the response function
follows a straight line on a log-log scale as does the response
function for Standard TCP, for low to moderate congestion.
However, in a low bandwidth network situation, it shows the
opposite result compared to TCP Vegas. In Cubic TCP, Fig 4
shows that in the high-speed network it simplifies the BIC
window control function and improves its TCP- friendliness
and RTT fairness as BIC’s growth function is too aggressive
for TCP especially under short RTT or low-speed networks. As
the name of the protocol represents, the window growth func-
tion of CUBIC is a cubic function regarding the surpassed time
since the last loss event, whose shape is very similar to the
growth function of BIC. The CUBIC function provides excel-
lent scalability and stability. The protocol keeps the window
growth rate independent of RTT, which keeps the protocol
TCP friendly under short and long RTTs. The congestion
epoch period of CUBIC is determined by the packet loss rate
alone. We can conclude based on congestion window, that in
low bandwidth network, TCP Vegas gives the better perfor-
mance as it can change its congestion window based on net-
work traffic situation but in high bandwidth network situation
it completely inefficient. Again, according to the Fig 4 we can
also conclude that Cubic & high-speed TCP shows its highest
performance in the high-speed network where cubic TCP is
best but in the low-speed network, they are completely ineffi-
cient.

3.2 Comparison of throughput (kbps) with respect to
time (Second)

The throughput of TCP packets and Acknowledgement
changes based on the change of its basic algorithms in every
TCP variant. In Fig 5 and Fig 6 we show the comparison of
throughput vs. time for TCP Taho, Reno, Newreno, Sack, Fack,
Vegas, HSTCP, Cubic TCP. As we can see, initially the
throughput and acknowledgment value increase abruptly and
then its remain constant with respect to time for rest of the
period, which indicates that packets delivery per RTT is a con-
stant, i.e.,, the same number of packets are delivered by the
network in a certain amount of cyclic period.
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Fig 5: Overall Comparison of throughput versus time (20 Mb)
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Fig.6: Overall Comparison of throughput versus time (2 Gb)

Fig 5 shows that TCP Vegas has the highest throughput,
which is 2951.96 Kbps for given topology-2 because of its wise
changes in slow start, congestion avoidance, and retransmis-
sion algorithms. The throughput of Newreno is 2936.81 Kbps,
i.e., its performance is a little bit low as compared to Vegas
due to congestion window. The TCP variants Sack and Fack
have higher throughput than those of Tahoe, Reno, and
Newreno. The Fack provides improved performance than that
of sack in some situations. The throughput of Sack and Vegas
are 2959.36 and 2964.97 respectively. However, the last & most
modern variants, HSTCP & Cubic TCP show the lowest
throughput value for the given topology, as it starts from slow

start phase every time after retransmission.

Fig 6 shows that CUBIC TCP and HSTCP has the highest
throughput for given topology-2 because of its wise changes in
slow start, congestion avoidance, and retransmission
algrithms although CUBIC TCP shows better result compared
to HSTCP. The TCP variants Sack and Fack have higher
throughput as compared to Newreno. However, The Fack
provides improved performance than that of sack in some
situations. The throughput of Sack and Vegas are 92596.88 and
92829.20 respectively. The throughput of Newreno is better
than Vegas, Reno, Tahoe and improves performance in
highspeed network and throughput is 86565.90 Kbps, i.e., its
performance is a little bit low as compared to Sack due to con-
gestion window. So finally, we can conclude that CUBIC TCP
shows its very efficient performance in the high-speed net-
work, but TCP Vegas is entirely in inefficient in challenging
network situations.

3.3 Numerical Analysis

The throughput of TCP packets and Acknowledgement
changes based on the change of its basic algorithms in every
TCP variant. In Fig 5 and Fig 6 we show the comparison of
throughput vs. time for TCP Taho, Reno, Newreno, Sack, Fack,
Vegas, HSTCP, Cubic TCP. As we can see, initially the
throughput.

Table-1 Comparison of Simulated data for TCP variants using different Parameters in Network Topologies.

MNetwork TCFP Fesult
Topology |BW wariation |[Gemerate| Received|Packet Packet Average Average End-to-end
Mame dPackets| Packets |dropped|delivery throughput | Ack delay (ms)
ratio (%) (Kbps) throughput(
Kbps)
Tahoe E&3 4 aeld 24 Q0 638X 26215 5.94 49 4707
Hemno 7318 7291 25 99 6583 288.20 Q.89 49 4708
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Topology- | 2Mb Fack 7420 7394 2a EERE =1 292 31 1020 49 47058
1 Vegas 1] 759 a 1040 o1 0a 102 4583
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Cubic 5108 5068 40 99 2169 206,43 7.30 49.6203“
lahoe 499 435 39 LLe B F - 1] ;a6 Lol T 323266
Feno 22338 22258 41 00 6865 2703 53 a4 69 523095
Newreno 24250 24176 EX] EENCEEE 2936 81 103.446 5.23158
biShner Sackl pEEEE] Ii562 15 EENEE] I959 35 10530 523207
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2 Fack 24470 24405 EE] 00 7464 20961 97 105.54 523454
Vegas LT 6023 [1] 99 9201 951.95 105.948 2.21BY
nsTcr [9553 L9151 B R 5.7 0 S3.33 2.23383
Cubic 16577 16493 3] 940 4933 2037 .27 7314 5.23474
Tahoe 4195535 429551 14 99 9944 TI 5y .60 178505 2.0041a
Reno 404984 404472 14 o9 8731 Ba367.06 14461.55 4 99798
Mewreno 405554 4055058 14 Q0 98B7 B4565.90 1466620 5.00418
Sackl 433508 433759 13 99 9887 Q1595 88 1781.70 500418
Fack 434598 4348547 13 99 98B3 QX829 20 1786.28 500418
Network *Ch Vegas 387200 35669 [1] 99 5485 AA395.05 138574 499754
Topology- P LT3 SoLlod 13 o ang
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4 EVALUATION OF TCP CONGESTION CONTROL
ALGORITHMS IN WIRELESS NETWORKS

When there is no infrastructure in the network, the mobile ad
hoc network is the best choice. We need to analyses the rout-
ing mechanisms which are called the MANET routing proto-
cols. In this section, we perform simulation in mobile ad-hoc
networks to investigate the performance of the various con-
gestion control algorithm (Tahoe, Reno, Newreno, Sack, Fack,
Vegas, HSTCP, Cubic) in TCP from different aspects over two
major routing protocols AODV and DSDV. In this analysis, the
simulations are performed with four slightly different simula-
tion scenarios that contain 3, 20, 30, 45 nodes respectively.

4.1 Comparison of Congestion window concerning
time

Currently, all implementations of the TCP congestion algo-
rithm assume that congestion causes timeouts but, also trans-
mission errors. This study stands when applied to wired net-
works as they are relatively reliable and show very low errors.
However, this concept does not stand for wireless network as
they suffer from high error and packet loss rates. For this rea-
son, any packet loss in wireless transmission is falsely consid-
ered by the TCP protocol as due to congestion which triggers
the congestion algorithm to reduce the window size to one
segment and consequently reducing transmission speed and
packet throughput. As the TCP congestion algorithm was not
initially designed to support the error-prone wireless network,
but the very reliable wired network, it is impossible for the
sender to differentiate between congestion loss and error loss.
As a result, in timeout situations over wireless networks, the
TCP often makes the wrong decision by slowing down the
burst of packets while it should instead retransmit lost pack-
ets. Congestion window (CWND) of TCP in wireless network
changes based on the change of its basic algorithms in every
TCP variant (Tahoe, Reno, Newreno, Sack, Fack, Vegas,
HSTCP, Cubic). Simulation result of congestion window de-
scribes slow start, congestion avoidance, fast retransmit and
fast recovery algorithms in TCP variants.
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Fig 7: Overall Comparison of Congestion window versus time
using AODV (3 nodes)
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Fig 8: Overall Comparison of Congestion window versus time
using AODV (45 nodes)
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Fig 9: Overall Comparison of Congestion window versus time
using DSDV (3 nodes)

Congestion window versus tine
35

Taho
Reno
Heureno
Sack —

Fack
vegas A—

Highspee:
i
25
28 -
J_%

38 -

15 -

Congestion windou

18 -

168

Sinulation tine
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time using DSDV (45 nodes)
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Finally, Fig 7, 8, 9 & 10 shows an overall comparison of the
congestion window versus time among all the TCP variants in
different network situation discussed above. We can conclude
based on congestion control, that in case of small number of
nodes, TCP Taho, Reno, Newreno gives highest performance
and in network scenarios where the number of nodes more
significant than 30, CUBIC TCP is best suited when AODV
routing protocol is used, and TCP Newreno is best suited
when DSDV routing protocol is used as it can change its con-
gestion window based on network traffic situation but in high
bandwidth network situation it completely inefficient. Again,
according to the figure above we can also conclude that Cubic
& high-speed TCP shows its highest performance in network
scenarios where the number of the node is higher than 30 and
the routing protocol is AODV.

4.2 Comparison of throughput (kbps) with respect to
time (Second)

4.2.1 Comparison of Throughput In case of AODV
routing protocol

Fig 11 & Fig 12 given below show the comparison of through-
put and versus time for TCP Tahoe, Reno, Newreno, Sack,
Fack, Vegas, HCTCP, CUBIC in case AODV routing protocol.
The simulation shows quite a different result from section 3.2.
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Fig 11: Overall Comparison of Congestion window versus
time using AODV (3 nodes)
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Figl12: Overall Comparison of Congestion window versus
time using AODV (45 nodes)

Fig 12 shows that CUBIC TCP indicated by Blue line in the
comparison graph has the highest throughput, which is
644.11Kbps for given topology-4 with 45 nodes because of its
wise changes in slow start, congestion avoidance, and re-
transmission algorithms. HSTCP which is indicated by Yellow
line is next to HSTCP in case of 45 nodes. The TCP variants
Sack and Fack have higher throughput than Newreno. The
Fack provides improved performance in throughput
(654.70kbps) than that of sack in some situations when the
number of the node is 30. The throughput of Sack and cubic
are 623.45, 626.28kbps respectively. However, they improve
throughput in some particular situations. The throughput of
Newreno is better than Vegas, Tahoe and improves perfor-
mance in high-speed network and throughput is 650.90 Kbps,
i.e., its performance is a little bit low as compared to Sack due
to congestion window when the number of the node is 20. The
throughput of Reno in case of AODV routing protocol is
671.43kbps when the number of the node is less than or equal
to 20. So finally, we can conclude that CUBIC TCP shows its
very efficient performance in the network when the number of
the node is higher than 30 but TCP Tahoe, Reno, Newreno
gives an efficient performance when some nodes are less than
10 and is completely inefficient in challenging network situa-
tion.

4.2.2 Comparison of Throughput In case of DSDV
routing protocol

Fig 13 and Fig 14 given below show the comparison of
throughput and acknowledgment vs. time for TCP Tahoe, Re-
no, Newreno, Sack, Fack, Vegas, HCTCP, CUBIC in case of
DSDV routing protocol. The simulation shows quite a differ-
ent result from section 4.2.1.
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Fig 13: Overall Comparison of Congestion window versus
time using DSDV (3 nodes).
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Fig 14.: Overall Comparison of Congestion window versus
time using DSDV (45 nodes).

Fig 14 shows that TCP Newreno indicated by Blue line in the
comparison graph has the highest throughput, which is
677.34Kbps for given wireless network topology-4 because of
its wise changes in slow start, congestion avoidance, and re-
transmission algorithms. Tahoe(669.97kbps), Fack
(669.41kbps) which are indicated by Red and Violate line is
next to TCP Newreno. The TCP variants Sack and Cubic,
HSTCP have lower throughput than Newreno when the num-
ber of the node is 45. However, Sack improves throughput in
some particular situations. The throughput of Reno and Cubic
TCP are improved in case of nodes less than equal to 30, and
the throughputs are 689.50, 684.18kbps respectively. The
throughput of TCP Reno is also best 703.06kbps than
NewReno, Tahoe, Sack, Fack and improves performance when
the number of nodes is less than or equal to 20. So finally, we
can conclude that TCP Newreno shows its very efficient per-
formance in the network where the number of the node is 45
and the routing protocol is DSDV but TCP Tahoe, Reno is effi-
cient in network situation where the number of the node is
less than 10.

4.3 Numerical analysis of TCP Over MANET

In the end simulation for each TCP variants, we have calculat-
ed the performance parameter which will further help to iden-
tify which TCP version is best suited for which situation. From
the table below, we can summarize that CUBIC TCP is best
suited for a network where the number of the node is higher
than 45 and routing protocol is AODV and TCP Newreno is
best for a network where the number of the node is higher
than 45 and Routing protocol is DSDV. Again, TCP Reno per-
forms its best when in both of AODV and DSDV routing pro-
tocol when the number of the node is less than or equal to 20
nodes.

Table-2: Simulated Data Table of Network Topology-1,2,3 & 4
using TCP variants using AODV

Routmg | TCP Throughput(kbps)
Protocol | Vatiznts Number of Nodzs
3 Nodes 20 Node 30 Nodes 43 Nodes
Taho 36121 f6d.67 02391 N
Reto 36121 623.14 704,66
Newreno | 36121
.| Satk 36121 2.
NV g TmE % T G
Ve | 21976 304.84 31668 Ej 3]
HSICE | 44280 708.68 004.18 04134
Cobic | 4484 60928 626.37 64411
—_
Table-3: Simulated Data Table of Network Topology-1,2,3&4
using TCP variants in case of DSDV
Roumg | TCP Variants Throuhputkkbys)
Protocol Number of Nodss
] Wﬁi iﬂ Hgﬂ.ﬂi 30 Nodes 47 Nodes
T J{0N! 1014 §13.82 66097
Reng J[0%i] 10306 68030 Wﬂ
Newtenp J{iX)! 69393 60404 61734
pspy | Sek 693,33 68738 680.03 .

Fak 10523 693.1 63470 66941

L ————
Vezzs 1034 35310 31668 16
HSTCP 336.90 691.80 6411 668.30

Cubie 430 68143 63418 63420

Table-4: Comparison of TCP variants based on their main Property (Congestion Control Algorithm)
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Properties Slow Start Congestion Avoid- Fast-Retransmit Fast-Recovery Advantage &
ance Problem
TCP
Variants
Taho The sender sets the | Uses AIMD tech- | On receiving three Takes a com-
CWND to 1 and | nique where cwnd | duplicate ACKs, it | ----- plete  timeout
then for each ACK | is set to half of the | retransmits packet interval to de-
received, it increases | current window | and set ssthresh to tect a packet
the CWD by 1 in | size than on each | half of cwnd and loss.
each RTT & lasts till | ACK for new data | then enters in slow
the cwnd reaches | cwnd is increased | start phase by set-
ssthresh. by (1/cwnd). ting cwnd to one
segment.
Reno Same as Taho Same as Taho Same as TCP Taho | The number of | It performs well
(Modificatio but does not return | duplicate ACKs | when the pack-
n of Taho) to slow start phase | inflates the current | et losses are
and effectively | CWND. small, but on
waits until half of a multiple packet
window of dupli- losses, its per-
cate ACKs have formance is as
been received. weak as TCP
Taho.
Newreno Same as Reno Same as Reno Same as Reno Here the new reno | Overcome the
(Modificatio “partial ACK” | problem of Re-
n of does not deflate | no, but it suf-
Reno) the usable win- | fers from the
dow back to the | fact that it takes
size of the CWND | one RTT to de-
and it does not | tect each packet
exit fast-recovery | loss.
until all the out-
standing data is
acknowledged.
Sack Same as New Reno Same as New Reno | Same as New Reno | It maintains a var- | It Overcomes
(Selective but the sender only | iable called pipe | the problem of
Acknowledg retransmits ~ data | that represents the | Newreno, but
ement) when the estimated | estimated number | the biggest
number of packets | of packets out- | problem with
in the path is less | standing in the | SACK is that
than the CWND path and handle | currently selec-
multiple  packet | tive
loss. acknowledgme
nts are not pro-
vided by the
receiver
Fack Same as Sack Same as Sackbut | Same as Sack It uses the forward | It accomplishes
(Forward decouples conges- SACK sequence | more  precise
Acknowledg tion control from number as a sign | control over the
ement) data recovery that all the previ- | data flow in the
thereby  attaining ous un- | network but in
more precise con- (selectively)- the
trol over the data acknowledged experimental
flow in the net- segments were | stage.
work. lost which obser-
vation allows im-
proving recovery
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of losses signifi-
cantly

Vegas It offers a modified | It determines con- | Modification of Overcome most

(Modificatio | slow start algorithm | gestion by a de- | Reno where if the | --- of the problem

n of Reno) which prevents it | crease in  the | (current segment of the above

from being congest- | sending rate as | transmission time)> TCP  variants
ed the network [10]. | compared to the | RTT; it then and very effi-
expected rate. immediately cient in data
retransmits the transmission.
segment  without
waiting for three
duplicate
acknowledgments
(8]

HSTCP Loss-based TCP It does not
congestion control | --- | - modify TCP
and only take.s ef- behavior in
fect with higher .
congestion win- er1.V1ronments
dowes. with . heavy

congestion, and
therefore does
not introduce
any new dan-
gers of conges-
tion collapse

CUBIC TCP It uses a Improved

. -—- -—- scalabili and
.Cublc fun'ctlon stabilitytyunder
m.stead c.)f a linear fast and long-
window increase of distance  net-
the current TCP works
standards.

5 CONCLUSION

In this work, the analysis is done on TCP variants named TCP
Tahoe, Reno, Newreno, Sack, Fack, Vegas, HSTCP, and Cubic
TCP in both wired and wireless network. Here we have evalu-
ated the performance characteristics (Congestion window,
Throughput, Delay, Jitter, Packet delivery ratio, End-to-end
delay) of various TCP congestion control schemes under the
wired network conditions with bottleneck end-to-end link
capacities. We tried to find some critical cases in which TCP
Reno, TCP New Reno, TCP Vegas, Cubic TCP, HSTCP make
some performance improvements compared to all simulated
TCP variants. From simulated data and graphs obtained, we
tried to find which TCP variants are better for challenging
network situations. In low bandwidth network, we find that
both TCP Vegas and TCP SACK make some performance im-
provements to TCP Reno. TCP Vegas achieves higher
throughput than Reno and SACK for large loss rate. TCP

SACK is better when more than one packet dropped in one
window. TCP Vegas causes much fewer packets retransmis-
sions than TCP Reno and SACK. We have also shown that
TCP Vegas does lead to a fair allocation of bandwidth for dif-
ferent delay connections. Both TCP Reno and SACK bias
against long delay connections. But TCP Vegas shows very
low throughput in case of high bandwidth network. In high
bandwidth network, Cubic TCP achieves higher throughput
compared to all other TCP variants. But one drawback of Cu-
bic TCP is its low throughput in low bandwidth network. We
have also concentrated on the behavior of TCP’s reliability in
the mobile ad-hoc network. In MANET, TCP Newreno, Cubic
TCP achieve the highest throughput when the routing proto-
col is DSDV and AODYV respectively, and a number of the
node is higher than 30. Finally, we have prepared a detail
comparison table and some suggestion in improving the
drawback of TCP variants and try to comment which variation
is better for which network situation.
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