
International Journal of Scientific & Engineering Research Volume 9, Issue 9, September-2018 183
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Exploring Congestion Control Mechanism of TCP
Variants over Wired & Wireless Networks

Syful Islam, Ratnadip Kuri, Md. Humayun Kabir, Md. Javed Hossain

Abstract— A reliable end to end communication is a buzzword that is promised by the transport layer protocol TCP. TCP, a Reliable
transport protocols are tuned to perform well in different networks but, packet losses occur mostly because of congestion. TCP contains
several mechanisms (such as slow start, congestion avoidance, fast retransmit and fast recovery) for ensuring reliability. However, it has
reached its limitation in some challenging network environments like-High speed communication, Communication over different media.
Thus, it requires further analysis and development of congestion control algorithms. In this paper, we have explored the reliability and
robustness of TCP variants (Tahoe, Reno, New-Reno, SACK, FACK and TCP VEGAS, HSTCP, CUBIC TCP) based on different
parameters such as throughput, end-to-delay, jitter and packet drop ratio over wired and wireless networks. We have also compared and
discussed different congestion control and avoidance mechanisms of TCP variants to show how they affect the throughput and efficiency of
different network environments.

Index Terms—Congestion avoidance, Congestion Window, Fast-recovery, Fast-retransmit, Reliability, Slow Start, TCP variants.

——————————  ——————————

1 INTRODUCTION
CP is a reliable connection-oriented end-to-end protocol
designed for the wireline networks that are characterized
by negligible random packet losses. Most of the data is

transmitted through TCP in today’s WWW (World Wide
Web). Early TCP (Transmission Control Protocol) implementa-
tion uses go-back-n mode with cumulative positive acknowl-
edgment and requires a retransmit time-out to retransmit the
lost packet. This TCP did little to minimize network conges-
tion. Modern TCP implementations contain AIMD (additive
increase/multiplicative decrease) [1] with four intertwined
algorithms (slow start, congestion avoidance, fast retransmit
and fast recovery) aimed at controlling network congestion
while maintaining good user throughput. It ensures reliability
by starting a timer whenever it sends a segment and the re-
ceiver that acknowledge the segments that it receives. If it
does not receive any acknowledgment from the receiver with-
in the ‘time-out’ period, it retransmits the segment again. Our
paper will start by taking a brief look at different congestion
avoidance algorithms and noting how they differ from each
other. In this paper, we try to represent a performance com-
parison table to clarify the main differences among the TCP
variations further.

2 CONGESTION CONTROL MECHANISM

2.1 Slow start

Slow-start is a mechanism used to gradually increase the
amount of data in transmission and attempts to keep the
segment uniformly spaced. It is one of the most critical parts
of the congestion avoidance technique used by TCP as
specified by RFC 5681[2]. This technique is accomplished in
conjunction with other algorithms to avoid sending more data
than the network is capable of transmitting, to avoid network
causing congestion. In the slow start, when a connection is
established, first the value of cwnd is set to 1, and after each
received ACK the value is updated to (cwnd = cwnd + 1), i.e.,
double of cwnd for each RTT. The exponential growth of
cwnd continues until a packet loss is observed, causing the
value of ssthresh to be updated to (ssthresh = cwnd/2). After
the packet loss, the connection starts from the slow start again
with cwnd = 1, and the window is increased exponential until
it equals ssthresh, the estimate for the available bandwidth in
the network. At this point, the connection goes to the
congestion avoidance phase where the value of cwnd is
increased less aggressively with the pattern (cwnd = cwnd +
1/cwnd), implying linear instead of exponential growth. This
linear increase will continue until a packet loss is detected.
That is why it is also known as the exponential growth phase.

2.2 TCP’s Congestion Avoidance
In Transmission Control Protocol (TCP), the congestion win-
dow is a mechanism of stopping the link between two places
from being overloaded with too much traffic, i.e., it is a way to
deal with packets loss. It is one of the most critical factors that
determine the number of bytes that can be outstanding at any
time. Congestion usually occurs when data arrives faster (a
fast LAN) and send out at a lower speed [3]. The sender main-
tains the congestion window where the size of this window is
calculated by estimating how much congestion there is be-
tween the two places. The basis of TCP congestion control
mechanism lies in Additive Increase Multiplicative Decrease
(AIMD), halving the congestion window for every window

T

————————————————
• Syful Islam, Lecturer, Dept. of Computer Science and Telecommunication

Engineering, Noakhali Science and Technology University,
Email: syfulcste@gmail.com

• Ratnadip Kuri, Lecturer, Dept. of Computer Science and Telecommunica-
tion Engineering, Noakhali Science and Technology University, Email:
ratnadipkuri@gmail.com

• Md. Humayun Kabir, Professor & Chairman, Dept. of Computer Science
and Telecommunication Engineering, Noakhali Science and Technology
University, Email: hkabir269@gmail.com

• Md. Javed Hossain, Associate Professor, Dept. of Computer Science and
Telecommunication Engineering, Noakhali Science and Technology Uni-
versity, Email: javednstu@gmail.com

IJSER

http://www.ijser.org/
mailto:syfulcste@gmail.com
mailto:ratnadipkuri@gmail.com
mailto:hkabir269@gmail.com
mailto:javednstu@gmail.com

International Journal of Scientific & Engineering Research Volume 9, Issue 9, September-2018 184
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

containing a packet loss, and increasing the congestion win-
dow by roughly one segment per RTT otherwise. If all seg-
ments are received, and the acknowledgments reach to the
sender on time, some constant is added to the window size.
The window keeps growing exponentially until a timeout oc-
curs or the receiver reaches its limit (a threshold value
"thresh"). After this, the congestion window increases linearly
at the rate of 1/(congestion window) packets on each new
acknowledgment received. When a packet is dropped, then
the congestion window(W) reduced to half. After the drop, the
TCP sender increases its congestion window linearly until the
congestion window has reached its old value W, and another
packet drop occurs. In [4] a steady-state model, the develop-
ment of TCP’s congestion window is depicted below:

Fig.1. Development of TCP’s congestion window.

2.3 TCP’s Congestion Avoidance
In Transmission Control Protocol (TCP), the Fast Retransmis-
sion is a performance enhancement technique where the du-
plicate acknowledgment is taken as the fundamental mecha-
nism to reduce the time a sender waits before retransmitting a
lost segment. The fast-retransmit mechanism ensures the re-
transmit of the packet as soon as possible if the packet is lost.
The TCP sender uses a timer to recognize lost segments. If an
acknowledgment is not received for a particular segment
within a specified time (Round-trip delay time), the sender
will assume the segment was lost in the network and will re-
transmit the segment. The fast-retransmit works as follows: if
a TCP sender receives four acknowledgments with same
acknowledge number then, there is enough evidence of packet
drop with the higher sequence number. The sender will re-
transmit the packet before its timeout. It means that instead of
waiting for the retransmit timer to expire, the sender can re-
transmit a packet immediately after receiving three duplicate
ACKs. The concept of fast retransmission technique is depict-
ed in Fig.2.

Fig.2. Representation of Fast-retransmission technique.

2.4 Fast Recovery
The Fast-Recovery algorithm is implemented together with a
Fast-Retransmit algorithm that retransmits the missing packet
signaled by three duplicate ACKs and wait for an acknowl-
edgment of the entire transmit window. It is also called Fast-
Retransmit/Fast-Recovery algorithm. The fast recovery is an
improved version of fast retransmit and algorithms are usual-
ly implemented together [5] as follows:

a) When the third duplicate ACK in a row is received, set
ssthresh to value:
ssthresh = min(cwnd/2, 2 MSS) -------------------------------(1)
where MSS=maximum segment size.

Retransmit the missing segment. Set cwnd to ssthresh
plus three times the segment size. This increases the con-
gestion window by the number of segments that have left
the network and which the other end has cached.

b) Each time another similar ACK arrives, which increase
cwnd by the segment size. This also inflates the conges-
tion window for the additional segment that has left the
network. Transmit a packet, if allowed by the new value of
cwnd:
cwnd = (ssthresh + no. of duplicate acks received) ------(2)

c) When the next ACK arrives, that acknowledges new data
packet, set cwnd to ssthresh. This ACK is the acknowl-
edgment of the retransmission of data from step 1, one
round-trip time after the retransmission. Additionally, this
ACK should acknowledge all the intermediate segments
sent between the lost packet and the receipt of the first
duplicate ACK. This step is congestion avoidance since
TCP is down to one-half the rate it was at when the packet
was lost.

3 TCP CONGESTION CONTROL ALGORITHMS IN WIRED
NETWORK

In this section, we performed the simulation to investigate the
performance of the various congestion control algorithms
(Taho, Reno, Newreno, Sack, Fack and Vegas, HSTCP, Cubic)
in TCP from different aspects in a wired network. Previous
work [6-7] perform comparison considering very few parame-
ters. In our comparative analysis, we tried to investigate most
of the parameter to explore actual behavior of TCP protocol
over wired and wireless network. Here we use network simu-
lator version-2.35[8-10] where TCL and OTCL scripting [11]
are used for better scheduling event and controlled environ-
ment.

3.1 Comparison of Congestion window concerning
time
Congestion window (CWND) of TCP changes based on the
change of its basic algorithms in every TCP variant (Taho, Re-
no, Newreno, Sack, Fack, Vegas, HSTCP, Cubic TCP). Simula-
tion result of congestion window describes slow start, conges-
tion avoidance, fast retransmit and fast recovery algorithms in

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 9, September-2018 185
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

TCP variants. In Fig 3 & Fig 4 we show an overall comparison
of all TCP variant for low and high bandwidth network in the
congestion window versus time graph.

Fig 3: Overall Comparison of Congestion window versus time
(20 Mb)

Fig 4: Overall Comparison of Congestion window versus time
(2 Gb)

In TCP Vegas, Fig.3 shows that cwnd of TCP Vegas increases
by the rate half than that of TCP Tahoe and New reno in slow
start phase. In congestion avoidance phase cwnd is set to a
constant value as cwnd is controlled according to network
traffic prediction based on observed RTT values. However, in
a high-speed network, TCP Vegas is quite inefficient in con-
trolling its congestion window due to its congestion control

mechanism as shown in fig 4. In High-speed TCP, Fig 4 shows
the modified response function that only takes effect with
higher congestion windows; it does not change TCP behavior
in environments with massive congestion and therefore does
not produce any new dangers of congestion drop in a high-
speed network. HSTCP ensures that the response function
follows a straight line on a log-log scale as does the response
function for Standard TCP, for low to moderate congestion.
However, in a low bandwidth network situation, it shows the
opposite result compared to TCP Vegas. In Cubic TCP, Fig 4
shows that in the high-speed network it simplifies the BIC
window control function and improves its TCP- friendliness
and RTT fairness as BIC’s growth function is too aggressive
for TCP especially under short RTT or low-speed networks. As
the name of the protocol represents, the window growth func-
tion of CUBIC is a cubic function regarding the surpassed time
since the last loss event, whose shape is very similar to the
growth function of BIC. The CUBIC function provides excel-
lent scalability and stability. The protocol keeps the window
growth rate independent of RTT, which keeps the protocol
TCP friendly under short and long RTTs. The congestion
epoch period of CUBIC is determined by the packet loss rate
alone. We can conclude based on congestion window, that in
low bandwidth network, TCP Vegas gives the better perfor-
mance as it can change its congestion window based on net-
work traffic situation but in high bandwidth network situation
it completely inefficient. Again, according to the Fig 4 we can
also conclude that Cubic & high-speed TCP shows its highest
performance in the high-speed network where cubic TCP is
best but in the low-speed network, they are completely ineffi-
cient.

3.2 Comparison of throughput (kbps) with respect to
time (Second)
The throughput of TCP packets and Acknowledgement
changes based on the change of its basic algorithms in every
TCP variant. In Fig 5 and Fig 6 we show the comparison of
throughput vs. time for TCP Taho, Reno, Newreno, Sack, Fack,
Vegas, HSTCP, Cubic TCP. As we can see, initially the
throughput and acknowledgment value increase abruptly and
then its remain constant with respect to time for rest of the
period, which indicates that packets delivery per RTT is a con-
stant, i.e., the same number of packets are delivered by the
network in a certain amount of cyclic period.

Fig 5: Overall Comparison of throughput versus time (20 Mb)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 9, September-2018 186
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Fig.6: Overall Comparison of throughput versus time (2 Gb)

Fig 5 shows that TCP Vegas has the highest throughput,
which is 2951.96 Kbps for given topology-2 because of its wise
changes in slow start, congestion avoidance, and retransmis-
sion algorithms. The throughput of Newreno is 2936.81 Kbps,
i.e., its performance is a little bit low as compared to Vegas
due to congestion window. The TCP variants Sack and Fack
have higher throughput than those of Tahoe, Reno, and
Newreno. The Fack provides improved performance than that
of sack in some situations. The throughput of Sack and Vegas
are 2959.36 and 2964.97 respectively. However, the last & most
modern variants, HSTCP & Cubic TCP show the lowest
throughput value for the given topology, as it starts from slow

start phase every time after retransmission.

Fig 6 shows that CUBIC TCP and HSTCP has the highest
throughput for given topology-2 because of its wise changes in
slow start, congestion avoidance, and retransmission
algrithms although CUBIC TCP shows better result compared
to HSTCP. The TCP variants Sack and Fack have higher
throughput as compared to Newreno. However, The Fack
provides improved performance than that of sack in some
situations. The throughput of Sack and Vegas are 92596.88 and
92829.20 respectively. The throughput of Newreno is better
than Vegas, Reno, Tahoe and improves performance in
highspeed network and throughput is 86565.90 Kbps, i.e., its
performance is a little bit low as compared to Sack due to con-
gestion window. So finally, we can conclude that CUBIC TCP
shows its very efficient performance in the high-speed net-
work, but TCP Vegas is entirely in inefficient in challenging
network situations.

3.3 Numerical Analysis
The throughput of TCP packets and Acknowledgement
changes based on the change of its basic algorithms in every
TCP variant. In Fig 5 and Fig 6 we show the comparison of
throughput vs. time for TCP Taho, Reno, Newreno, Sack, Fack,
Vegas, HSTCP, Cubic TCP. As we can see, initially the
throughput.

Table-1 Comparison of Simulated data for TCP variants using different Parameters in Network Topologies.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 9, September-2018 187
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

4 EVALUATION OF TCP CONGESTION CONTROL
ALGORITHMS IN WIRELESS NETWORKS

When there is no infrastructure in the network, the mobile ad
hoc network is the best choice. We need to analyses the rout-
ing mechanisms which are called the MANET routing proto-
cols. In this section, we perform simulation in mobile ad-hoc
networks to investigate the performance of the various con-
gestion control algorithm (Tahoe, Reno, Newreno, Sack, Fack,
Vegas, HSTCP, Cubic) in TCP from different aspects over two
major routing protocols AODV and DSDV. In this analysis, the
simulations are performed with four slightly different simula-
tion scenarios that contain 3, 20, 30, 45 nodes respectively.

4.1 Comparison of Congestion window concerning
time
Currently, all implementations of the TCP congestion algo-
rithm assume that congestion causes timeouts but, also trans-
mission errors. This study stands when applied to wired net-
works as they are relatively reliable and show very low errors.
However, this concept does not stand for wireless network as
they suffer from high error and packet loss rates. For this rea-
son, any packet loss in wireless transmission is falsely consid-
ered by the TCP protocol as due to congestion which triggers
the congestion algorithm to reduce the window size to one
segment and consequently reducing transmission speed and
packet throughput. As the TCP congestion algorithm was not
initially designed to support the error-prone wireless network,
but the very reliable wired network, it is impossible for the
sender to differentiate between congestion loss and error loss.
As a result, in timeout situations over wireless networks, the
TCP often makes the wrong decision by slowing down the
burst of packets while it should instead retransmit lost pack-
ets. Congestion window (CWND) of TCP in wireless network
changes based on the change of its basic algorithms in every
TCP variant (Tahoe, Reno, Newreno, Sack, Fack, Vegas,
HSTCP, Cubic). Simulation result of congestion window de-
scribes slow start, congestion avoidance, fast retransmit and
fast recovery algorithms in TCP variants.

Fig 7: Overall Comparison of Congestion window versus time
using AODV (3 nodes)

Fig 8: Overall Comparison of Congestion window versus time

using AODV (45 nodes)

Fig 9: Overall Comparison of Congestion window versus time
using DSDV (3 nodes)

Fig 10: Overall Comparison of Congestion window versus

time using DSDV (45 nodes)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 9, September-2018 188
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Finally, Fig 7, 8, 9 & 10 shows an overall comparison of the
congestion window versus time among all the TCP variants in
different network situation discussed above. We can conclude
based on congestion control, that in case of small number of
nodes, TCP Taho, Reno, Newreno gives highest performance
and in network scenarios where the number of nodes more
significant than 30, CUBIC TCP is best suited when AODV
routing protocol is used, and TCP Newreno is best suited
when DSDV routing protocol is used as it can change its con-
gestion window based on network traffic situation but in high
bandwidth network situation it completely inefficient. Again,
according to the figure above we can also conclude that Cubic
& high-speed TCP shows its highest performance in network
scenarios where the number of the node is higher than 30 and
the routing protocol is AODV.

4.2 Comparison of throughput (kbps) with respect to
time (Second)

4.2.1 Comparison of Throughput In case of AODV
routing protocol
Fig 11 & Fig 12 given below show the comparison of through-
put and versus time for TCP Tahoe, Reno, Newreno, Sack,
Fack, Vegas, HCTCP, CUBIC in case AODV routing protocol.
The simulation shows quite a different result from section 3.2.

Fig 11: Overall Comparison of Congestion window versus
time using AODV (3 nodes)

Fig12: Overall Comparison of Congestion window versus
time using AODV (45 nodes)

Fig 12 shows that CUBIC TCP indicated by Blue line in the
comparison graph has the highest throughput, which is
644.11Kbps for given topology-4 with 45 nodes because of its
wise changes in slow start, congestion avoidance, and re-
transmission algorithms. HSTCP which is indicated by Yellow
line is next to HSTCP in case of 45 nodes. The TCP variants
Sack and Fack have higher throughput than Newreno. The
Fack provides improved performance in throughput
(654.70kbps) than that of sack in some situations when the
number of the node is 30. The throughput of Sack and cubic
are 623.45, 626.28kbps respectively. However, they improve
throughput in some particular situations. The throughput of
Newreno is better than Vegas, Tahoe and improves perfor-
mance in high-speed network and throughput is 650.90 Kbps,
i.e., its performance is a little bit low as compared to Sack due
to congestion window when the number of the node is 20. The
throughput of Reno in case of AODV routing protocol is
671.43kbps when the number of the node is less than or equal
to 20. So finally, we can conclude that CUBIC TCP shows its
very efficient performance in the network when the number of
the node is higher than 30 but TCP Tahoe, Reno, Newreno
gives an efficient performance when some nodes are less than
10 and is completely inefficient in challenging network situa-
tion.

4.2.2 Comparison of Throughput In case of DSDV
routing protocol
Fig 13 and Fig 14 given below show the comparison of
throughput and acknowledgment vs. time for TCP Tahoe, Re-
no, Newreno, Sack, Fack, Vegas, HCTCP, CUBIC in case of
DSDV routing protocol. The simulation shows quite a differ-
ent result from section 4.2.1.

Fig 13: Overall Comparison of Congestion window versus
time using DSDV (3 nodes).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 9, September-2018 189
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Fig 14.: Overall Comparison of Congestion window versus

time using DSDV (45 nodes).

Fig 14 shows that TCP Newreno indicated by Blue line in the
comparison graph has the highest throughput, which is
677.34Kbps for given wireless network topology-4 because of
its wise changes in slow start, congestion avoidance, and re-
transmission algorithms. Tahoe(669.97kbps), Fack
(669.41kbps) which are indicated by Red and Violate line is
next to TCP Newreno. The TCP variants Sack and Cubic,
HSTCP have lower throughput than Newreno when the num-
ber of the node is 45. However, Sack improves throughput in
some particular situations. The throughput of Reno and Cubic
TCP are improved in case of nodes less than equal to 30, and
the throughputs are 689.50, 684.18kbps respectively. The
throughput of TCP Reno is also best 703.06kbps than
NewReno, Tahoe, Sack, Fack and improves performance when
the number of nodes is less than or equal to 20. So finally, we
can conclude that TCP Newreno shows its very efficient per-
formance in the network where the number of the node is 45
and the routing protocol is DSDV but TCP Tahoe, Reno is effi-
cient in network situation where the number of the node is
less than 10.

4.3 Numerical analysis of TCP Over MANET
In the end simulation for each TCP variants, we have calculat-
ed the performance parameter which will further help to iden-
tify which TCP version is best suited for which situation. From
the table below, we can summarize that CUBIC TCP is best
suited for a network where the number of the node is higher
than 45 and routing protocol is AODV and TCP Newreno is
best for a network where the number of the node is higher
than 45 and Routing protocol is DSDV. Again, TCP Reno per-
forms its best when in both of AODV and DSDV routing pro-
tocol when the number of the node is less than or equal to 20
nodes.

.

Table-2: Simulated Data Table of Network Topology-1,2,3 & 4
using TCP variants using AODV

Table-3: Simulated Data Table of Network Topology-1,2,3&4
using TCP variants in case of DSDV

Table-4: Comparison of TCP variants based on their main Property (Congestion Control Algorithm)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 9, September-2018 190
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Properties

TCP
Variants

Slow Start Congestion Avoid-
ance

Fast-Retransmit Fast-Recovery Advantage &
Problem

Taho The sender sets the
CWND to 1 and
then for each ACK
received, it increases
the CWD by 1 in
each RTT & lasts till
the cwnd reaches
ssthresh.

Uses AIMD tech-
nique where cwnd
is set to half of the
current window
size than on each
ACK for new data
cwnd is increased
by (1/cwnd).

On receiving three
duplicate ACKs, it
retransmits packet
and set ssthresh to
half of cwnd and
then enters in slow
start phase by set-
ting cwnd to one
segment.

Takes a com-
plete timeout
interval to de-
tect a packet
loss.

Reno
(Modificatio
n of Taho)

Same as Taho Same as Taho Same as TCP Taho
but does not return
to slow start phase
and effectively
waits until half of a
window of dupli-
cate ACKs have
been received.

The number of
duplicate ACKs
inflates the current
CWND.

It performs well
when the pack-
et losses are
small, but on
multiple packet
losses, its per-
formance is as
weak as TCP
Taho.

Newreno
(Modificatio
n of
Reno)

Same as Reno Same as Reno Same as Reno Here the new reno
“partial ACK”
does not deflate
the usable win-
dow back to the
size of the CWND
and it does not
exit fast-recovery
until all the out-
standing data is
acknowledged.

Overcome the
problem of Re-
no, but it suf-
fers from the
fact that it takes
one RTT to de-
tect each packet
loss.

Sack
(Selective
Acknowledg
ement)

Same as New Reno Same as New Reno Same as New Reno
but the sender only
retransmits data
when the estimated
number of packets
in the path is less
than the CWND

It maintains a var-
iable called pipe
that represents the
estimated number
of packets out-
standing in the
path and handle
multiple packet
loss.

It Overcomes
the problem of
Newreno, but
the biggest
problem with
SACK is that
currently selec-
tive
acknowledgme
nts are not pro-
vided by the
receiver

Fack
(Forward
Acknowledg
ement)

Same as Sack Same as Sackbut
decouples conges-
tion control from
data recovery
thereby attaining
more precise con-
trol over the data
flow in the net-
work.

Same as Sack It uses the forward
SACK sequence
number as a sign
that all the previ-
ous un-
(selectively)-
acknowledged
segments were
lost which obser-
vation allows im-
proving recovery

It accomplishes
more precise
control over the
data flow in the
network but in
the
experimental
stage.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 9, September-2018 191
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

of losses signifi-
cantly

Vegas
(Modificatio
n of Reno)

It offers a modified
slow start algorithm
which prevents it
from being congest-
ed the network [10].

It determines con-
gestion by a de-
crease in the
sending rate as
compared to the
expected rate.

Modification of
Reno where if the
(current segment
transmission time)>
RTT; it then
immediately
retransmits the
segment without
waiting for three
duplicate
acknowledgments
[8]

Overcome most
of the problem
of the above
TCP variants
and very effi-
cient in data
transmission.

HSTCP ------------------------ Loss-based TCP
congestion control
and only takes ef-
fect with higher
congestion win-
dows.

It does not
modify TCP

behavior in
environments
with heavy
congestion, and
therefore does
not introduce
any new dan-
gers of conges-
tion collapse

CUBIC TCP ------------------------ It uses a

 Cubic function
instead of a linear
window increase of
the current TCP
standards.

Improved
scalability and
stability under
fast and long-
distance net-
works

5 CONCLUSION
In this work, the analysis is done on TCP variants named TCP
Tahoe, Reno, Newreno, Sack, Fack, Vegas, HSTCP, and Cubic
TCP in both wired and wireless network. Here we have evalu-
ated the performance characteristics (Congestion window,
Throughput, Delay, Jitter, Packet delivery ratio, End-to-end
delay) of various TCP congestion control schemes under the
wired network conditions with bottleneck end-to-end link
capacities. We tried to find some critical cases in which TCP
Reno, TCP New Reno, TCP Vegas, Cubic TCP, HSTCP make
some performance improvements compared to all simulated
TCP variants. From simulated data and graphs obtained, we
tried to find which TCP variants are better for challenging
network situations. In low bandwidth network, we find that
both TCP Vegas and TCP SACK make some performance im-
provements to TCP Reno. TCP Vegas achieves higher
throughput than Reno and SACK for large loss rate. TCP

SACK is better when more than one packet dropped in one
window. TCP Vegas causes much fewer packets retransmis-
sions than TCP Reno and SACK. We have also shown that
TCP Vegas does lead to a fair allocation of bandwidth for dif-
ferent delay connections. Both TCP Reno and SACK bias
against long delay connections. But TCP Vegas shows very
low throughput in case of high bandwidth network. In high
bandwidth network, Cubic TCP achieves higher throughput
compared to all other TCP variants. But one drawback of Cu-
bic TCP is its low throughput in low bandwidth network. We
have also concentrated on the behavior of TCP’s reliability in
the mobile ad-hoc network. In MANET, TCP Newreno, Cubic
TCP achieve the highest throughput when the routing proto-
col is DSDV and AODV respectively, and a number of the
node is higher than 30. Finally, we have prepared a detail
comparison table and some suggestion in improving the
drawback of TCP variants and try to comment which variation
is better for which network situation.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 9, September-2018 192
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

ACKNOWLEDGMENT
The authors would like to thanks the department of computer
science and Telecommunication Engineering for supporting
the research.

REFERENCES
[1] Jian (Jason) and Yi Zhen. “Comparison of different TCP congestion control

mechanism.”, Link: http://www2.ensc.sfu.ca, Access date: 10.04.2017.W.-K.
Chen, Linear Networks and Systems. Belmont, Calif.: Wadsworth, pp.
123-135, 1993. (Book style)

[2] M. Allman, V. Paxson, E. Blanton. “TCP Congestion Control”,
RFC5681, September 2009

[3] Digvijaysinh B Kumpavat , Prof. Paras S Gosai and Vyomal N
Pandya. “Comparison of TCP congestion control mechanisms Tahoe,
Newreno and Vegas”. IOSR Journal of Electronics and Communication
Engineering, Volume 5, Issue 6, PP 74-79

[4] S. Floyd. “Promoting the Use of End-to-End Congestion Control in
the Internet”. IEEE/ACM Transactions on Networking, Volume 7, Issue
4.

[5] W. Stevens. “TCP Slow Start, Congestion Avoidance, Fast Retrans-
mit, and Fast Recovery Algorithms”. RFC 2001, January 1997.

[6] Md. Shohidul Islam, M.A Kashem, W.H sadid, M.A Rahman, M.N
Islam, S. Anam. “TCP Variants and Network Parameters: A Com-
prehensive Performance Analysis”, International Multiconference of
Engineerings and Computer Scientists 2009, Date: March 18-20 2009,
pp:351-353.

[7] Lawrence S. Brakmo and Larry L. Peterson. “TCP Vegas: End to End
Congestion Avoidance on a Global Internet”, IEEE Journal on Selected
Areas in Communication, Volume 13, No 8, pp:1465-1480.

[8] Hui (Hilary) Zhang and Zhengbing Bian, Evaluation of different TCP
congestion control algorithms using NS-2,
Link:http://www2.ensc.sfu.ca/~ljilja/ENSC835/Spring02/Projects/bian_zhan
g.hilary/Hilary_and_Bian_Report.pdf, Access Date: 5-07-2017.

[9] The Network Simulator - ns-2, Link: http://www.isi.edu/nsnam/ns, Date
Access: 7.06.2017.

[10] Paul Meeneghan and Declan Delaney, An Introduction to NS, Nam,
and Otcl scripting, Department of Computer Science, National Uni-
versity of Ireland, Maynooth, 2004.

[11] TCL and OTCL programming, Link:
http://www.mathcs.emory.edu/~cheung/Courses/558/Syllabus/A2-Tcl/Tcl-1-
vars.html, Access Date: 6.04.2017

IJSER

http://www.ijser.org/

	1 Introduction
	2 Congestion Control Mechanism
	2.1 Slow start
	Slow-start is a mechanism used to gradually increase the amount of data in transmission and attempts to keep the segment uniformly spaced. It is one of the most critical parts of the congestion avoidance technique used by TCP as specified by RFC 5681[...
	2.2 TCP’s Congestion Avoidance
	2.3 TCP’s Congestion Avoidance
	2.4 Fast Recovery

	3 TCP Congestion Control Algorithms In Wired Network
	3.1 Comparison of Congestion window concerning time
	Fig 4: Overall Comparison of Congestion window versus time (2 Gb)
	3.2 Comparison of throughput (kbps) with respect to time (Second)
	3.3 Numerical Analysis

	4 Evaluation of TCP Congestion Control Algorithms in Wireless Networks
	4.1 Comparison of Congestion window concerning time
	Fig 9: Overall Comparison of Congestion window versus time using DSDV (3 nodes)
	4.2 Comparison of throughput (kbps) with respect to time (Second)
	4.2.1 Comparison of Throughput In case of AODV routing protocol
	4.2.2 Comparison of Throughput In case of DSDV routing protocol
	4.3 Numerical analysis of TCP Over MANET

	5 Conclusion
	Acknowledgment
	References

