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Exploring Congestion Control Mechanism of TCP 
Variants over Wired & Wireless Networks 
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Abstract— A reliable end to end communication is a buzzword that is promised by the transport layer protocol TCP. TCP, a Reliable 
transport protocols are tuned to perform well in different networks but, packet losses occur mostly because of congestion. TCP contains 
several mechanisms (such as slow start, congestion avoidance, fast retransmit and fast recovery) for ensuring reliability. However, it has 
reached its limitation in some challenging network environments like-High speed communication, Communication over different media. 
Thus, it requires further analysis and development of congestion control algorithms. In this paper, we have explored the reliability and 
robustness of TCP variants (Tahoe, Reno, New-Reno, SACK, FACK and TCP VEGAS, HSTCP, CUBIC TCP) based on different 
parameters such as throughput, end-to-delay, jitter and packet drop ratio over wired and wireless networks. We have also compared and 
discussed different congestion control and avoidance mechanisms of TCP variants to show how they affect the throughput and efficiency of 
different network environments. 

Index Terms—Congestion avoidance, Congestion Window, Fast-recovery, Fast-retransmit, Reliability, Slow Start, TCP variants.  

——————————      —————————— 
 

1 INTRODUCTION                                                                     
CP is a reliable connection-oriented end-to-end protocol 
designed for the wireline networks that are characterized 
by negligible random packet losses. Most of the data is 

transmitted through TCP in today’s WWW (World Wide 
Web). Early TCP (Transmission Control Protocol) implementa-
tion uses go-back-n mode with cumulative positive acknowl-
edgment and requires a retransmit time-out to retransmit the 
lost packet. This TCP did little to minimize network conges-
tion. Modern TCP implementations contain AIMD (additive 
increase/multiplicative decrease) [1] with four intertwined 
algorithms (slow start, congestion avoidance, fast retransmit 
and fast recovery) aimed at controlling network congestion 
while maintaining good user throughput. It ensures reliability 
by starting a timer whenever it sends a segment and the re-
ceiver that acknowledge the segments that it receives. If it 
does not receive any acknowledgment from the receiver with-
in the ‘time-out’ period, it retransmits the segment again. Our 
paper will start by taking a brief look at different congestion 
avoidance algorithms and noting how they differ from each 
other. In this paper, we try to represent a performance com-
parison table to clarify the main differences among the TCP 
variations further. 
 
2 CONGESTION CONTROL MECHANISM 

2.1 Slow start   

Slow-start is a mechanism used to gradually increase the 
amount of data in transmission and attempts to keep the 
segment uniformly spaced. It is one of the most critical parts 
of the congestion avoidance technique used by TCP as 
specified by RFC 5681[2]. This technique is accomplished in 
conjunction with other algorithms to avoid sending more data 
than the network is capable of transmitting, to avoid network 
causing congestion. In the slow start, when a connection is 
established, first the value of cwnd is set to 1, and after each 
received ACK the value is updated to (cwnd = cwnd + 1), i.e., 
double of cwnd for each RTT. The exponential growth of 
cwnd continues until a packet loss is observed, causing the 
value of ssthresh to be updated to (ssthresh = cwnd/2). After 
the packet loss, the connection starts from the slow start again 
with cwnd = 1, and the window is increased exponential until 
it equals ssthresh, the estimate for the available bandwidth in 
the network. At this point, the connection goes to the 
congestion avoidance phase where the value of cwnd is 
increased less aggressively with the pattern (cwnd = cwnd + 
1/cwnd), implying linear instead of exponential growth. This 
linear increase will continue until a packet loss is detected. 
That is why it is also known as the exponential growth phase. 

2.2 TCP’s Congestion Avoidance 
In Transmission Control Protocol (TCP), the congestion win-
dow is a mechanism of stopping the link between two places 
from being overloaded with too much traffic, i.e., it is a way to 
deal with packets loss. It is one of the most critical factors that 
determine the number of bytes that can be outstanding at any 
time. Congestion usually occurs when data arrives faster (a 
fast LAN) and send out at a lower speed [3]. The sender main-
tains the congestion window where the size of this window is 
calculated by estimating how much congestion there is be-
tween the two places. The basis of TCP congestion control 
mechanism lies in Additive Increase Multiplicative Decrease 
(AIMD), halving the congestion window for every window 
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containing a packet loss, and increasing the congestion win-
dow by roughly one segment per RTT otherwise. If all seg-
ments are received, and the acknowledgments reach to the 
sender on time, some constant is added to the window size. 
The window keeps growing exponentially until a timeout oc-
curs or the receiver reaches its limit (a threshold value 
"thresh"). After this, the congestion window increases linearly 
at the rate of 1/(congestion window) packets on each new 
acknowledgment received. When a packet is dropped, then 
the congestion window(W) reduced to half. After the drop, the 
TCP sender increases its congestion window linearly until the 
congestion window has reached its old value W, and another 
packet drop occurs. In [4] a steady-state model, the develop-
ment of TCP’s congestion window is depicted below: 

 
 

 
 
 
 

 

 

Fig.1. Development of TCP’s congestion window. 

2.3 TCP’s Congestion Avoidance 
In Transmission Control Protocol (TCP), the Fast Retransmis-
sion is a performance enhancement technique where the du-
plicate acknowledgment is taken as the fundamental mecha-
nism to reduce the time a sender waits before retransmitting a 
lost segment. The fast-retransmit mechanism ensures the re-
transmit of the packet as soon as possible if the packet is lost. 
The TCP sender uses a timer to recognize lost segments. If an 
acknowledgment is not received for a particular segment 
within a specified time (Round-trip delay time), the sender 
will assume the segment was lost in the network and will re-
transmit the segment. The fast-retransmit works as follows: if 
a TCP sender receives four acknowledgments with same 
acknowledge number then, there is enough evidence of packet 
drop with the higher sequence number. The sender will re-
transmit the packet before its timeout. It means that instead of 
waiting for the retransmit timer to expire, the sender can re-
transmit a packet immediately after receiving three duplicate 
ACKs. The concept of fast retransmission technique is depict-
ed in Fig.2. 

Fig.2. Representation of Fast-retransmission technique. 

2.4 Fast Recovery 
The Fast-Recovery algorithm is implemented together with a 
Fast-Retransmit algorithm that retransmits the missing packet 
signaled by three duplicate ACKs and wait for an acknowl-
edgment of the entire transmit window. It is also called Fast-
Retransmit/Fast-Recovery algorithm. The fast recovery is an 
improved version of fast retransmit and algorithms are usual-
ly implemented together [5] as follows: 

a) When the third duplicate ACK in a row is received, set 
ssthresh to value: 
ssthresh = min(cwnd/2, 2 MSS) -------------------------------(1)  
where MSS=maximum segment size. 
 
Retransmit the missing segment. Set cwnd to ssthresh 
plus three times the segment size. This increases the con-
gestion window by the number of segments that have left 
the network and which the other end has cached. 
 

b) Each time another similar ACK arrives, which increase 
cwnd by the segment size. This also inflates the conges-
tion window for the additional segment that has left the 
network. Transmit a packet, if allowed by the new value of 
cwnd: 
cwnd = (ssthresh + no. of duplicate acks received) ------(2) 
 

c) When the next ACK arrives, that acknowledges new data 
packet, set cwnd to ssthresh. This ACK is the acknowl-
edgment of the retransmission of data from step 1, one 
round-trip time after the retransmission. Additionally, this 
ACK should acknowledge all the intermediate segments 
sent between the lost packet and the receipt of the first 
duplicate ACK. This step is congestion avoidance since 
TCP is down to one-half the rate it was at when the packet 
was lost. 

3 TCP CONGESTION CONTROL ALGORITHMS IN WIRED 
NETWORK 

In this section, we performed the simulation to investigate the 
performance of the various congestion control algorithms 
(Taho, Reno, Newreno, Sack, Fack and Vegas, HSTCP, Cubic) 
in TCP from different aspects in a wired network. Previous 
work [6-7] perform comparison considering very few parame-
ters. In our comparative analysis, we tried to investigate most 
of the parameter to explore actual behavior of TCP protocol 
over wired and wireless network. Here we use network simu-
lator version-2.35[8-10] where TCL and OTCL scripting [11] 
are used for better scheduling event and controlled environ-
ment. 
 

3.1 Comparison of Congestion window concerning 
time 
Congestion window (CWND) of TCP changes based on the 
change of its basic algorithms in every TCP variant (Taho, Re-
no, Newreno, Sack, Fack, Vegas, HSTCP, Cubic TCP). Simula-
tion result of congestion window describes slow start, conges-
tion avoidance, fast retransmit and fast recovery algorithms in 
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TCP variants. In Fig 3 & Fig 4 we show an overall comparison 
of all TCP variant for low and high bandwidth network in the 
congestion window versus time graph.  

Fig 3:  Overall Comparison of Congestion window versus time 
(20 Mb) 

Fig 4: Overall Comparison of Congestion window versus time 
(2 Gb) 

 
In TCP Vegas, Fig.3 shows that cwnd of TCP Vegas increases 
by the rate half than that of TCP Tahoe and New reno in slow 
start phase. In congestion avoidance phase cwnd is set to a 
constant value as cwnd is controlled according to network 
traffic prediction based on observed RTT values. However, in 
a high-speed network, TCP Vegas is quite inefficient in con-
trolling its congestion window due to its congestion control 

mechanism as shown in fig 4. In High-speed TCP, Fig 4 shows 
the modified response function that only takes effect with 
higher congestion windows; it does not change TCP behavior 
in environments with massive congestion and therefore does 
not produce any new dangers of congestion drop in a high-
speed network. HSTCP ensures that the response function 
follows a straight line on a log-log scale as does the response 
function for Standard TCP, for low to moderate congestion. 
However, in a low bandwidth network situation, it shows the 
opposite result compared to TCP Vegas. In Cubic TCP, Fig 4 
shows that in the high-speed network it simplifies the BIC 
window control function and improves its TCP- friendliness 
and RTT fairness as BIC’s growth function is too aggressive 
for TCP especially under short RTT or low-speed networks. As 
the name of the protocol represents, the window growth func-
tion of CUBIC is a cubic function regarding the surpassed time 
since the last loss event, whose shape is very similar to the 
growth function of BIC. The CUBIC function provides excel-
lent scalability and stability. The protocol keeps the window 
growth rate independent of RTT, which keeps the protocol 
TCP friendly under short and long RTTs. The congestion 
epoch period of CUBIC is determined by the packet loss rate 
alone. We can conclude based on congestion window, that in 
low bandwidth network, TCP Vegas gives the better perfor-
mance as it can change its congestion window based on net-
work traffic situation but in high bandwidth network situation 
it completely inefficient. Again, according to the Fig 4 we can 
also conclude that Cubic & high-speed TCP shows its highest 
performance in the high-speed network where cubic TCP is 
best but in the low-speed network, they are completely ineffi-
cient. 

3.2 Comparison of throughput (kbps) with respect to 
time (Second) 
The throughput of TCP packets and Acknowledgement 
changes based on the change of its basic algorithms in every 
TCP variant. In Fig 5 and Fig 6 we show the comparison of 
throughput vs. time for TCP Taho, Reno, Newreno, Sack, Fack, 
Vegas, HSTCP, Cubic TCP. As we can see, initially the 
throughput and acknowledgment value increase abruptly and 
then its remain constant with respect to time for rest of the 
period, which indicates that packets delivery per RTT is a con-
stant, i.e., the same number of packets are delivered by the 
network in a certain amount of cyclic period. 

 
Fig 5:  Overall Comparison of throughput versus time (20 Mb) 
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Fig.6:  Overall Comparison of throughput versus time (2 Gb) 

Fig 5 shows that TCP Vegas has the highest throughput, 
which is 2951.96 Kbps for given topology-2 because of its wise 
changes in slow start, congestion avoidance, and retransmis-
sion algorithms. The throughput of Newreno is 2936.81 Kbps, 
i.e., its performance is a little bit low as compared to Vegas 
due to congestion window. The TCP variants Sack and Fack 
have higher throughput than those of Tahoe, Reno, and 
Newreno. The Fack provides improved performance than that 
of sack in some situations. The throughput of Sack and Vegas 
are 2959.36 and 2964.97 respectively. However, the last & most 
modern variants, HSTCP & Cubic TCP show the lowest 
throughput value for the given topology, as it starts from slow 

start phase every time after retransmission. 
 
Fig 6 shows that CUBIC TCP and HSTCP has the highest 
throughput for given topology-2 because of its wise changes in 
slow start, congestion avoidance, and retransmission 
algrithms although CUBIC TCP shows better result compared 
to HSTCP. The TCP variants Sack and Fack have higher 
throughput as compared to Newreno. However, The Fack 
provides improved performance than that of sack in some 
situations. The throughput of Sack and Vegas are 92596.88 and 
92829.20 respectively. The throughput of Newreno is better 
than Vegas, Reno, Tahoe and improves performance in 
highspeed network and throughput is 86565.90 Kbps, i.e., its 
performance is a little bit low as compared to Sack due to con-
gestion window. So finally, we can conclude that CUBIC TCP 
shows its very efficient performance in the high-speed net-
work, but TCP Vegas is entirely in inefficient in challenging 
network situations. 

3.3 Numerical Analysis 
The throughput of TCP packets and Acknowledgement 
changes based on the change of its basic algorithms in every 
TCP variant. In Fig 5 and Fig 6 we show the comparison of 
throughput vs. time for TCP Taho, Reno, Newreno, Sack, Fack, 
Vegas, HSTCP, Cubic TCP. As we can see, initially the 
throughput. 

 
Table-1 Comparison of Simulated data for TCP variants using different Parameters in Network Topologies. 
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4 EVALUATION OF TCP CONGESTION CONTROL 
ALGORITHMS IN WIRELESS NETWORKS 

When there is no infrastructure in the network, the mobile ad 
hoc network is the best choice. We need to analyses the rout-
ing mechanisms which are called the MANET routing proto-
cols. In this section, we perform simulation in mobile ad-hoc 
networks to investigate the performance of the various con-
gestion control algorithm (Tahoe, Reno, Newreno, Sack, Fack, 
Vegas, HSTCP, Cubic) in TCP from different aspects over two 
major routing protocols AODV and DSDV. In this analysis, the 
simulations are performed with four slightly different simula-
tion scenarios that contain 3, 20, 30, 45 nodes respectively.  
 

4.1 Comparison of Congestion window concerning 
time 
Currently, all implementations of the TCP congestion algo-
rithm assume that congestion causes timeouts but, also trans-
mission errors. This study stands when applied to wired net-
works as they are relatively reliable and show very low errors. 
However, this concept does not stand for wireless network as 
they suffer from high error and packet loss rates.  For this rea-
son, any packet loss in wireless transmission is falsely consid-
ered by the TCP protocol as due to congestion which triggers 
the congestion algorithm to reduce the window size to one 
segment and consequently reducing transmission speed and 
packet throughput. As the TCP congestion algorithm was not 
initially designed to support the error-prone wireless network, 
but the very reliable wired network, it is impossible for the 
sender to differentiate between congestion loss and error loss.  
As a result, in timeout situations over wireless networks, the 
TCP often makes the wrong decision by slowing down the 
burst of packets while it should instead retransmit lost pack-
ets. Congestion window (CWND) of TCP in wireless network 
changes based on the change of its basic algorithms in every 
TCP variant (Tahoe, Reno, Newreno, Sack, Fack, Vegas, 
HSTCP, Cubic). Simulation result of congestion window de-
scribes slow start, congestion avoidance, fast retransmit and 
fast recovery algorithms in TCP variants. 

 
 

 

 

 

 

 

 

 

Fig 7:  Overall Comparison of Congestion window versus time 
using AODV (3 nodes) 

 
 
 

 

 

 

 

 

 

 
Fig 8:  Overall Comparison of Congestion window versus time 

using AODV (45 nodes)  

Fig 9:  Overall Comparison of Congestion window versus time 
using DSDV (3 nodes) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 10:  Overall Comparison of Congestion window versus 

time using DSDV (45 nodes) 
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Finally, Fig 7, 8, 9 & 10 shows an overall comparison of the 
congestion window versus time among all the TCP variants in 
different network situation discussed above. We can conclude 
based on congestion control, that in case of small number of 
nodes, TCP Taho, Reno, Newreno gives highest performance 
and in network scenarios where the number of nodes more 
significant than 30, CUBIC TCP is best suited when AODV 
routing protocol is used, and TCP Newreno is best suited 
when DSDV routing protocol is used as it can change its con-
gestion window based on network traffic situation but in high 
bandwidth network situation it completely inefficient. Again, 
according to the figure above we can also conclude that Cubic 
& high-speed TCP   shows its highest performance in network 
scenarios where the number of the node is higher than 30 and 
the routing protocol is AODV. 

4.2 Comparison of throughput (kbps) with respect to 
time (Second) 

4.2.1 Comparison of Throughput In case of AODV 
routing protocol 
Fig 11 & Fig 12 given below show the comparison of through-
put and versus time for TCP Tahoe, Reno, Newreno, Sack, 
Fack, Vegas, HCTCP, CUBIC in case AODV routing protocol.  
The simulation shows quite a different result from section 3.2. 

 
 

Fig 11:  Overall Comparison of Congestion window versus 
time using AODV (3 nodes) 

 

 

 
 

 
 
 

Fig12:  Overall Comparison of Congestion window versus 
time using AODV (45 nodes) 

 
 

Fig 12 shows that CUBIC TCP indicated by Blue line in the 
comparison graph has the highest throughput, which is 
644.11Kbps for given topology-4 with 45 nodes because of its 
wise changes in slow start, congestion avoidance, and re-
transmission algorithms. HSTCP which is indicated by Yellow 
line is next to HSTCP in case of 45 nodes.  The TCP variants 
Sack and Fack have higher throughput than Newreno. The 
Fack provides improved performance in throughput 
(654.70kbps) than that of sack in some situations when the 
number of the node is 30. The throughput of Sack and cubic 
are 623.45, 626.28kbps respectively. However, they improve 
throughput in some particular situations. The throughput of 
Newreno is better than Vegas, Tahoe and improves perfor-
mance in high-speed network and throughput is 650.90 Kbps, 
i.e., its performance is a little bit low as compared to Sack due 
to congestion window when the number of the node is 20. The 
throughput of Reno in case of AODV routing protocol is 
671.43kbps when the number of the node is less than or equal 
to 20. So finally, we can conclude that CUBIC TCP shows its 
very efficient performance in the network when the number of 
the node is higher than 30 but TCP Tahoe, Reno, Newreno 
gives an efficient performance when some nodes are less than 
10 and is completely inefficient in challenging network situa-
tion. 
 

4.2.2 Comparison of Throughput In case of DSDV 
routing protocol 
Fig 13 and Fig 14 given below show the comparison of 
throughput and acknowledgment vs. time for TCP Tahoe, Re-
no, Newreno, Sack, Fack, Vegas, HCTCP, CUBIC in case of 
DSDV routing protocol.  The simulation shows quite a differ-
ent result from section 4.2.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 13:  Overall Comparison of Congestion window versus 
time using DSDV (3 nodes). 
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Fig 14.: Overall Comparison of Congestion window versus 

time using DSDV (45 nodes). 
 
 
Fig 14 shows that TCP Newreno indicated by Blue line in the 
comparison graph has the highest throughput, which is 
677.34Kbps for given wireless network topology-4 because of 
its wise changes in slow start, congestion avoidance, and re-
transmission algorithms. Tahoe(669.97kbps), Fack 
(669.41kbps) which are indicated by Red and Violate line is 
next to TCP Newreno.  The TCP variants Sack and Cubic, 
HSTCP have lower throughput than Newreno when the num-
ber of the node is 45. However, Sack improves throughput in 
some particular situations.  The throughput of Reno and Cubic 
TCP are improved in case of nodes less than equal to 30, and 
the throughputs are 689.50, 684.18kbps respectively. The 
throughput of TCP Reno is also best 703.06kbps than 
NewReno, Tahoe, Sack, Fack and improves performance when 
the number of nodes is less than or equal to 20. So finally, we 
can conclude that TCP Newreno shows its very efficient per-
formance in the network where the number of the node is 45 
and the routing protocol is DSDV but TCP Tahoe, Reno is effi-
cient in network situation where the number of the node is 
less than 10. 
 
4.3 Numerical analysis of TCP Over MANET 
In the end simulation for each TCP variants, we have calculat-
ed the performance parameter which will further help to iden-
tify which TCP version is best suited for which situation. From 
the table below, we can summarize that CUBIC TCP is best 
suited for a network where the number of the node is higher 
than 45 and routing protocol is AODV and TCP Newreno is 
best for a network where the number of the node is higher 
than 45 and Routing protocol is DSDV. Again, TCP Reno per-
forms its best when in both of AODV and DSDV routing pro-
tocol when the number of the node is less than or equal to 20 
nodes. 

.  
 

Table-2:  Simulated Data Table of Network Topology-1,2,3 & 4 
using TCP variants using AODV 

 

 
 

Table-3: Simulated Data Table of Network Topology-1,2,3&4 
using TCP variants in case of DSDV 

 

 
 
 
 
 

 
 
 
 
 

Table-4: Comparison of TCP variants based on their main Property (Congestion Control Algorithm) 
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Properties 
 
TCP 
Variants 

Slow Start Congestion Avoid-
ance 

Fast-Retransmit Fast-Recovery Advantage & 
Problem 

Taho The sender sets the 
CWND to 1 and 
then for each ACK 
received, it increases 
the CWD by 1 in 
each RTT & lasts till 
the cwnd reaches 
ssthresh. 

Uses AIMD tech-
nique where cwnd 
is set to half of the 
current window 
size than on each 
ACK for new data 
cwnd is increased 
by (1/cwnd). 

On receiving three 
duplicate ACKs, it 
retransmits packet 
and set ssthresh to 
half of cwnd and 
then enters in slow 
start phase by set-
ting cwnd to one 
segment. 

-------------------------
----- 

Takes a com-
plete timeout 
interval to de-
tect a packet 
loss. 

Reno 
(Modificatio
n of Taho) 

Same as Taho Same as Taho Same as TCP Taho 
but does not return 
to slow start phase 
and effectively 
waits until half of a 
window of dupli-
cate ACKs have 
been received. 

The number of 
duplicate ACKs 
inflates the current 
CWND. 

It performs well 
when the pack-
et losses are 
small, but on 
multiple packet 
losses, its per-
formance is as 
weak as TCP 
Taho. 

Newreno 
(Modificatio
n of  
Reno) 

Same as Reno Same as Reno Same as Reno Here the new reno 
“partial ACK” 
does not deflate 
the usable win-
dow back to the 
size of the CWND 
and it does not 
exit fast-recovery 
until all the out-
standing data is 
acknowledged.  

Overcome the 
problem of Re-
no, but it suf-
fers from the 
fact that it takes 
one RTT to de-
tect each packet 
loss. 

Sack 
(Selective 
Acknowledg
ement) 

Same as New Reno Same as New Reno Same as New Reno 
but the sender only 
retransmits data 
when the estimated 
number of packets 
in the path is less 
than the CWND   

It maintains a var-
iable called pipe 
that represents the 
estimated number 
of packets out-
standing in the 
path and handle 
multiple packet 
loss. 

It Overcomes 
the problem of 
Newreno, but 
the biggest 
problem with 
SACK is that 
currently selec-
tive 
acknowledgme
nts are not pro-
vided by the 
receiver 

Fack 
(Forward 
Acknowledg
ement) 

Same as Sack Same as Sackbut 
decouples conges-
tion control from 
data recovery 
thereby attaining 
more precise con-
trol over the data 
flow in the net-
work. 

Same as Sack It uses the forward 
SACK sequence 
number as a sign 
that all the previ-
ous un-
(selectively)-
acknowledged 
segments were 
lost which obser-
vation allows im-
proving recovery 

It accomplishes 
more precise 
control over the 
data flow in the 
network but in 
the 
experimental 
stage. 
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of losses signifi-
cantly 

Vegas 
(Modificatio
n of Reno) 

It offers a modified 
slow start algorithm 
which prevents it 
from being congest-
ed the network [10]. 

It determines con-
gestion by a de-
crease in the 
sending rate as 
compared to the 
expected rate. 

Modification of 
Reno where if the 
(current segment 
transmission time)> 
RTT; it then 
immediately 
retransmits the 
segment without 
waiting for three 
duplicate 
acknowledgments 
[8] 

-------------------------
--- 

Overcome most 
of the problem 
of the above 
TCP variants 
and very effi-
cient in data 
transmission. 

HSTCP ------------------------ Loss-based TCP 
congestion control 
and only takes ef-
fect with higher 
congestion win-
dows. 

--------------------------
--- 

-------------------------
----- 

It does not 
modify TCP  

behavior in 
environments 
with heavy 
congestion, and 
therefore does 
not introduce 
any new dan-
gers of conges-
tion collapse 

CUBIC TCP ------------------------ It uses a 

 Cubic function 
instead of a linear 
window increase of 
the current TCP 
standards. 

 

--------------------------
--- 

-------------------------
--- 

Improved 
scalability and 
stability under 
fast and long-
distance net-
works 

 
5 CONCLUSION 
In this work, the analysis is done on TCP variants named TCP 
Tahoe, Reno, Newreno, Sack, Fack, Vegas, HSTCP, and Cubic 
TCP in both wired and wireless network. Here we have evalu-
ated the performance characteristics (Congestion window, 
Throughput, Delay, Jitter, Packet delivery ratio, End-to-end 
delay) of various TCP congestion control schemes under the 
wired network conditions with bottleneck end-to-end link 
capacities. We tried to find some critical cases in which TCP 
Reno, TCP New Reno, TCP Vegas, Cubic TCP, HSTCP make 
some performance improvements compared to all simulated 
TCP variants. From simulated data and graphs obtained, we 
tried to find which TCP variants are better for challenging 
network situations. In low bandwidth network, we find that 
both TCP Vegas and TCP SACK make some performance im-
provements to TCP Reno. TCP Vegas achieves higher 
throughput than Reno and SACK for large loss rate. TCP 

SACK is better when more than one packet dropped in one 
window. TCP Vegas causes much fewer packets retransmis-
sions than TCP Reno and SACK. We have also shown that 
TCP Vegas does lead to a fair allocation of bandwidth for dif-
ferent delay connections. Both TCP Reno and SACK bias 
against long delay connections. But TCP Vegas shows very 
low throughput in case of high bandwidth network. In high 
bandwidth network, Cubic TCP achieves higher throughput 
compared to all other TCP variants. But one drawback of Cu-
bic TCP is its low throughput in low bandwidth network. We 
have also concentrated on the behavior of TCP’s reliability in 
the mobile ad-hoc network. In MANET, TCP Newreno, Cubic 
TCP achieve the highest throughput when the routing proto-
col is DSDV and AODV respectively, and a number of the 
node is higher than 30. Finally, we have prepared a detail 
comparison table and some suggestion in improving the 
drawback of TCP variants and try to comment which variation 
is better for which network situation.  
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